Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
نویسندگان
چکیده
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics.
منابع مشابه
Numerical modeling for nonlinear biochemical reaction networks
Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by the Runge-Kutta of order four (RK4) and by nonstandard finite difference (NSFD) method. A...
متن کاملA Dissipative Approach to the Identification of Biochemical Reaction Networks
Estimation of kinetic parameters is a key step in modelling biochemical reaction networks as, often, their direct estimation is expensive, time-consuming or even infeasible. This article proposes a parameter estimation procedure, which explicitly takes into account the model structure of the biological systems. The convergence is guaranteed using a dissipativity argument and a coordinate transf...
متن کاملA variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks.
We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimizati...
متن کاملA scalable moment-closure approximation for large-scale biochemical reaction networks
Motivation Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The...
متن کاملSensitivity analysis for stochastic chemical reaction networks with multiple time-scales
Stochastic models for chemical reaction networks have become very popular in recent years. For such models, the estimation of parameter sensitivities is an important and challenging problem. Sensitivity values help in analyzing the network, understanding its robustness properties and also in identifying the key reactions for a given outcome. Most of the methods that exist in the literature for ...
متن کامل